If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7t+9t^2=0
a = 9; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·9·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*9}=\frac{-14}{18} =-7/9 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*9}=\frac{0}{18} =0 $
| 16=25+2x | | 7x-3=3x-25 | | 2x^2-7-x(2x+1)=0 | | x=x^2-3x-45 | | 15n=2n+24 | | 21q+14=-6q+42 | | X/3+x/5+x/2=30 | | ?x6-34=?x4-12 | | 2y+3/2=7/2 | | -5y=15y+9 | | 8y=43(y=5) | | -5y/9=5y/3+1 | | 9.8-2p=1.6 | | 0.3x-0.2(2x+5)=0.4 | | 3q/5=1/1-q/10 | | 3q/5=1-q/10 | | 3q/5=1/1-9/10 | | 3q/5=1-9/10 | | -5=-5q/6 | | -3-7p=5p-1 | | 12^-5x=6 | | 72x=49 | | 0=-5+t-3t | | -3+3(x-2)=1 | | 4m+10=18m= | | 216=x^2/2x2x | | 2(-1-y)=1 | | 1=-6y+5y/7 | | 8^2n=1/64 | | X=-6+-9x | | 14-x-5=-5×+3 | | 3=2a/3+1 |